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An exact renormalization group equation for the Ginzburg-Landau-Wilson 
functional of an arbitrary symmetry is obtained. The equation derived does not 
contain redundant operators which must be transformed away. 

Renormalization group (RG) theory has made tremendous progress in 
studying the singular behavior near the critical point of systems which 
undergo a continuous phase transition (for review see, e.g., Ma, 1976; Amit, 
1984; Baker, 1990). There are a number of quite different approaches in the 
theory. One of the most fundamental is the approach based on the exact RG 
equation (Wilson and Kogut, 1974), which gives general insight into the 
structure of the theory. Although usually difficult to work with, this 
approach provides the basis for the theory of critical phenomena and may 
generate new approximation schemes (Golner and Reidel, 1976; Reidel et 
al., 1985; Golner, 1986; Ivanchenko et al., 1990; Lisyansky et al., 1992). The 
substantial drawback of this approach has been that an exact RG equation 
contains an infinite number of redundant operators (Wegner and Hougton, 
1973; Bell and Wilson, 1974; Wegner, 1976) which carry no physical meaning 
and should therefore be eliminated. For isotropic systems this problem was 
solved in Ivanchenko and Lisyansky (1992) and Ivanchenko et  al. (1992), 
where the exact RG equation that does not contain redundant operators was 
obtained. This equation made it possible to develop a new perturbation 
theory using the numerically small critical exponent r/ as an expansion 
parameter (Ivanchenko et  al., 1992). Ivanchenko and Lisyansky (1992) and 
Ivanchenko et  al. (1992)  considered isotropic systems only. In the present 
paper, we substantially generalize the scheme developed there and obtain 
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the exact renormalization group equation free of redundant operators for a 
system of an arbitrary symmetry. 

We consider a system described by a Ginzburg-Landau-Wi lson  
functional of a very general type, 

k = 0  I . . . q 2 k  ~r I , ' . . , ~ 2 k  : 1 

x g~' ...... 2,(q, . . . . .  q2k)(2 ~ q, ~ : ; ( q ,  ( I )  
t I i = l  

where ~b is an n-component vector, Sq = ~ ddq/( 2~)d" The vertices A have an 
arbitrary tensorial structure with respect to indices ~,. but possess an 
obvious symmetry 

g...=,.-.ej .--( . . . .  q , , . . . ,  q y , . . . )  = g.-.=J...=; ..-( . . . .  q: . . . . .  q ; , . . . )  (2 )  

All momentum integrals in equation (1) must be cut off on some momen- 
tum scale A. It is much more convenient to perform all momentum 
integrations up to infinity, but instead we add to the functional (1) a term 
H 0 that provides a momentum cutoff for the theory, 

':q H0[~b] : ~ Go l(q, A)l~p(q)l 2 (3) 

where the propagator Go is defined by 

Go(q, A) = q-  2S(qE/A2) (4) 

Here S(x) is a monotonic function with the properties S(x = 0) = 1 and 
limx_, oo S(x)x"= 0 for any m. Assuming that the vertices gk(ql . . . . .  q2k) 
do not diverge with increasing qi, then the term H0 provides either a 
smooth cutoff when S(x) is a smooth function or a sharp cutoff when S(x) 
is a step function. 

We now perform the following two steps, which are standard for the 
RG theory. First, we decrease the number of degrees of freedom of  the 
sytem described by the functional H[~b] = H0[q~ ] + H;[~b] by integrating the 
partition function with respect to Fourier components ~b(q) with momenta 
within a spherical shell A(1 - r < q < A in momentum space with ~ < 1. 
Second, we rescale all momenta in order to restore the original momentum 
cutoff A. To do this, we represent the partition function in the form 

Z = .fOrk exp( - H[~b]) = Z0<exp( --HI[fp])>o,A :--  Zo<w[qb]>O,A (5) 

where 

= [Dq~ exp(--Ho[~]) (6) Zo d 
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and the averaging ( ' " )o ,A  is performed with respect to the Gaussian 
functional Ho[r at a given value of A. 

Before performing RG transformations, we write down the following 
identity: 

=- Zo' f Dr w[r exp( - Ho[r 

= Z~IZ~ ~ fDr162 Cz] exp( - H 0 [ r  q~2]) (7) 
3 

where 

Zo~=fDr Ae)]r 2] 

1;q Ho[(]/I, r = ~ Go,~(q, A,)]r 2 + ~ Gs A2)]r 2 (8) 

Goz(q, A2) = Go(q, A) - Go,(q,  A , )  ~ ~ A  OG(A]__o.q, - .  ~. 2~h(q) 
c~A 

h(q) = q-2A2 dS(q2/A) (9) 
dA 2 

In order to perform the integration with respect to short-wave modes, we 
expand (w[r r with respect to r in equation (7) so that 

~w[r 

1 62w[r z,~;,~,~r,,~ +...] 

• exp( - Hole, ,  r (10) 

Since Ho[r r is a quadratic form with respect to r only, even terms of 
the expansion (10) survive. Keeping terms of lowest order with respect to 

only, we find 

<w[O(q)] >o,A - <(1 + r163 >o,A.- r (11) 

integrated out. In this case Go2 is given by 

with r = r + r and Go(q, A) = Go~(q, A,) + Goz(q, A2). If  we 
now assume that Gol(q, A1)=  Go(q, A ( 1 - 4 ) )  with ~ ,~ 1, then r are 
the modes with momenta within a shell A( 1 - 4) < q < A which should be 
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where the operator [,,~ is defined as 

fq 6r ~(q)6~b62 s = V h(q) ~ ~( _ q) (12) 

and the averaging (" ' ")o,A~l o is performed with the functional 

H0[~, A(1 - O] = ~ Go ~ (q, A(1 - ~))[q~(q)[~ (13) 

Therefore, the right-hand side of equation (11) contains effectively only 
modes with q < A( 1 - ~). This completes the first step of the RG transfor- 
mation. 

For the second step we restore the momentum cutoff A through the 
transformation q = q ' ( 1 -  ~). This transformation, however, does not re- 
store the original functional Ho, 

l fqG-I Ho[r A(I - ~)] = ~ o (q, A(1 - ~))l~b(q)l 2 

(1 
- 2 G o l ( q ,  A ) [ r  - ~))]2 (14)  

To transform H~(A) into Ho(A), we make the substitution 

~b ~(q) = ~ [6 ~ + ~e ~'(q)]q~''(q( 1 + ~)) 

= ~ I~Sz~ q- ~(~(q) + 6~ q . ~--~q); dp (15) 

where at present e~'(q) is an arbitrary function with the only condition 
e~'(q) = ~ '~(-q) ,  which preserves the symmetry (2). Applying the transfor- 
mation (15) to (w[q~])O,A~- O in equation (11) and keeping terms of lowest 
order in ~, we obtain 

(w'[qS])0,A = ([ 1 + r163 + s  +/~C + s  )]w[q~] )o.A (16) 

where the operator s is defined by (12), s  is a result of the expansion (15), 

s = e~P(--q) + 6 ~p q" r 6r (17) 

/~C arises from the transformation of H0(A(I -~)) into Ho(A), 

s fq G~ ~ [6~'d 2 
Vd + 2 _ e==(q)] 

(18) / 

Lisyansky and Nicolaides 



Generalized Renormalized Group Equation 2403 

and s comes about when the shrinking of  volume V = V'(1 + ~d) is 
considered, 

s = Vd-~ (19) 

At this point one can derive the final RG equation for the functional 
H~ by using the relationship w[05] = e x p ( -  HI[05]), 

/-}~ [05] = V,'a----~--~H* [qS] + -2 - 2 ~,e ~ q ~/~(q)G o- i(q, A)05 ~( q)05 "( - q) 

}q~ [q) +6~eq" aq J a05~(q) ~dq 4,y I._\ 

~ .  • 2 H i [ 0 5 ]  r ] 6H,[05] ] (20) 
+ fq h(q)~ L605~(q)a05=(_q) 605~(q) 605=(_q)_ ] 

Here we defined r/~V(q) as 

~ ~,(q) = a~e(g + 2) - 2 ~ ' ( - q )  (21) 

Equation (20) is an exact RG equation for the anisotropic functional 
(I). This equation contains an arbitrary function ~/~e(q), which has to be 
defined. The most direct choice for ~/=e(q) seems to be zero. This choice 
would simplify the equation and make it similar to the traditional ones. 
However, such an equation contains redundant operators, which would 
have to be eliminated by developing a proper procedure. Our goal is to 
obtain an equation free of  redundant operators. This can be achieved by a 
special choice of  the function r/~'(q). First of all, let us note that within the 
renormalization procedure the vertex a, (q) is renormalized. The whole or a 
portion of the q-dependent part of this renormalization can be incorpo- 
rated into the function Go ~ of the functional H0. This would chang e the 
cutoff procedure, which should, however, remain the same within the 
renormalization process. To avoid this, we define the function r/=e(q) such 
that it cancels the q-dependent renormalization of the vertex ~ (q). In order 
to do this, we extract an explicit equation for this vertex from equation 
(20). 

+ ~ Q~e,,(q) _ 2 ~ g~(q)g~'(q)h(q) (22) 
7 7 

where 

Q~Ta(q) = 3 fp h(p)g~a(q, - q ,  p, - p )  (23) 
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We can now split equation (22) into two equations: one for g~o, which is 
the momentum-independent part of ~l(q), and another for 
g', (q) = g, (q) - gin, 

g]'o ~ = Y' [26 =~ - ~/=~(0)]g~o + ~ Q=aY~(0) - 2 ~ g{~og~{h(O) (24) 

,g{'~(q) = -rl'~(q)Go'(q,A)+ ~ {[2a='-rl~'(q) -a~'q. ~--~]g','~(q) 

- [,7=Rq) - ~W(0)]g~r + O=e~Rq)  - Q ~ Y ( O )  - 2 g ~ g g ~ o [ h ( q )  - h ( 0 ) ]  

2[g~'~g{~e(q) + g{=~(q)g~eo + g;=~(q)g{~e(q)]h(q)} (25) 
1 

Using equation (25), we can define the function ~/=e(q) such that the 
derivative of d{ (q) is equal to zero. This means that if the vertex gJ (q) of 
the initial functional H/ i s  constant, then a q-dependent part of this vertex 
will not be generated and the functional H o will be intact within the 
renormalization procedure. The requirement ~{(q) = 0 implies that 

t/~e(q) = ~/~'(0) - E (tl'~(O)Go'(g, A) + E {2[h(q) - h(O)]g~g~o 
v k 7 

- Q=~(q)  4- Q=~(0)} ) [g~0  + G o '(q, A)6 ~p] - '  (26) 

Equation (26) defines the momentum-dependent part of the function 
t/=e(q). We still have to define n 2 components of the tensor ~/=e(0). We can 
use these values to simplify the RG equations and clarify the physical 
meaning of t/~e. To do this, let us diagonalize the vertex ~o in the initial 
functional H~. This can always be done without loss of generality. The 
diagonal components of this tensor are trial critical temperatures for the 
corresponding components of the order parameter ~b(q). However, as one 
can see from equation (24), even if the nondiagonal part of the tensor gm =~ 
does not exist in the initial functional, it will be generated within the 
renormalization process. We can use the arbitrariness of tensor q=a to keep 
the tensor g~o ~tJ diagonal. In order to do this, let us split equation (24) into 
two separate equations for diagonal and nondiagonal parts of the vertex 
glo =/~. Defining gm =/~ = 6=t~r ~ + (1 - 6=t~)r=t~, we have 

f= = (2 - r/=)r = + Q=(O) + 2(r=)2h(O) (27) 

t :~a = (2 -- r/~)r ~a - ~ ~ r  ~a + ~t~(O) 

( 2 8 )  
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where r/", Q~ and ~,t~, ~ are diagonal and nondiagonal elements of 
tensors r/"a and ~r Q'ar~, respectively, 

rt ~'(o) = & ~rt �9 + (I - ~ ) 4 ~ '  

(29) 
Q'P~(q) = & ~aQ ~(q) + ( 1 - 6"a)Q~a(q) 

7 

Now, by choosing 

4 ~p = O~lr  ~ (30) 

we provide that if the initial functional does not contain nondiagonal parts 
of the vertex ~1, then this vertex remains diagonal after the renormaliza- 
tion. If at last we require that the expansion of r/~'(q) does not contain q2 
terms, then the following equation defines the diagonal part of the tensor 
,7"~(0): 

d �9 ) 
q = ~q2 [Q (q - 2h(q)(r~)2]q=o (31) 

The function q~a(q) is now completely defined and there is no more 
freedom in the exact RG equation (20); therefore, it must contain no 
redundant operators. The physical meaning of the function r/"a is sug- 
gested by the equation (27): at the stable fixed point of the functional 
(1), r/" is equal to the critical exponent q of the corresponding critical 
mode ~b'. 
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